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Abstract—In this paper, a new quasi single stage highly efficient 

buck boost inverter is presented. The structure of the inverter 

leads to the reduction of inductor shoot through current and dead 

time elimination. This is also capable of bidirectional power 

conversion and due to this, the body diodes of the switches can 

be avoided and the losses and reverse recovery issues is avoided. 

Due to the high frequency pwm switching phenomenon, the size 

of the inductors and capacitors are greatly reduced. The fuzzy 

logic control is replacing the existing PI controller so that the 

system can be adapted to transient changes in input voltage 

variations. The simulation is performed in MATLAB/Simulink 

software. 
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I. INTRODUCTION 

 

The current source inverters and voltage source inverters are the 

conventional type of inverters which only capable of only boost 

and only buck respectively. In voltage source inverters, due to 

EMI interference, shoot through problems arises. In current 

source inverter, open circuit issues are there due to EMI. To 

avoid those issues, we need dead time for VSIs and overlap time 

for CSIs in gating pulses. This causes power quality issues in 

output waveforms. 

The load regulation is an important aspect in variable dc voltage 

sources especially with renewable energy sources such as PV, 

wind, etc., To maintain the constant load voltage with varying 

input voltage, two stage inverters are used. A dc-dc converter is 

cascaded with voltage source inverters can provide the necessary 

voltage regulation. But in boost converters, huge dc link 

capacitance is needed and in buck converter, the inductor will be 

bulky which leads to reduction in efficiency and also cause 

voltage and current stress which leads to increase in switching 

loss which further reduce the efficiency. This leads to the design 

of quasi z source inverters which can operate in both buck and 

boost modes. It can be done by the impedence network placed 

between source and the inverter. In this, the issues related to the 

EMI interference can be avoided. The drawback of these 

inverters are the limit in voltage conversion and switching losses 

due to higher voltage and current stress. It cannot be used in case 

of wide range of input voltage variation. 

 
Fig 1 (a) Voltage source inverter, (b) Current source inverter 

 

An active BBI was developed in which both buck and boost 

operations can be done but it needs snubber circuit in ac side to 

avoid commutation issues. This was rectified by introducing soft 

commutation technique but it increases complexity of control 

circuit as it needs to sense the polarity of the ac voltage and this 

reduce the reliability of the inverter. 

The IGBTs are replaced with MOSFETs due to high frequency 

switching and reduced switching losses. But it risk failure due to 

reverse recovery of body diodes. The body diode issue was 

solved by introducing anti parallel diodes to the switches of dual 

buck inverter. This also eliminates the shoot through problems 

caused in VSIs. A boost converter is introduced with the above 

mentioned dual buck inverter which causes in increase of stages 

and also losses. The position of the buck and boost converter are 

interchanged results in reducing the number of passive elements 

used and also reduce the losses caused by them. 

In this paper, a new quasi single stage buck boost inverter is 

introduced with bidirectional capability. It can provide regulated 

load voltage and also operates under wide range of input voltage 

variation. The operation of the proposed inverter is analyzed 

briefly along with the design of the parameters. The proposed 

inverter is operated under both boost and buck modes with PI and 

fuzzy controllers provide the much needed voltage regulation. 

 
Fig 2 Two stage Conventional Boost Inverter 
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Fig 3 Two stage Conventional Buck Inverter 

 

 
Fig 4Quasi Z-source Inverter 

 

 

II.PROPOSED SINGLE STAGE BUCK BOOST 

INVERTER 
 

 The proposed inverter consists of MOSFETs coupled 

with external diodes in series, so that no shoot through current 

flow occurs. 

 
Fig 5 Proposed Buck Boost Inverter 

 

The inductors in the proposed inverter will act as buck and boost 

inductors and also limits the current flow. When dead time 

occurs in gating pulses, the inductor currents will flow through 

the output capacitors. They will also reduce the inductor current 

ripples and act as filters. 

The pulse generation circuit for the proposed inverter is provided 

below: 

 
Fig 6 PWM pulse generation circuit for proposed inverter 

The switches S1, S2, S3 and S4 will be turned ON and OFF by 

comparing the sine wave (M) with high frequency carrier wave 

and switches S5, S6, S7 and S8 will be turned ON and OFF by 

comparing a dc signal (D) with high frequency carrier wave. 

The operation of the proposed inverter is provided below: 

 

 

Buck mode of operation: 

In this the input voltage (Vin) is higher than the load voltage 

(Vo). In this mode, S5 and S8 are ON and S6 and S7 will be OFF 

throughout the time.In this L1a and L1b operate in positive half 

cycle and L2a and L2b will operate in negative half cycle. The 

gating pulse waveforms of the proposed inverter in buck mode is 

provided below: 

 
Fig 7 PWM pulses for proposed inverter in buck mode 

The buck operation is divided into two modes which is explained 

below: 

Mode 1: 

In this, S1 and S3 are ON and S2 and S4 is turned OFF. The 

diodes D2 and D4 will not conduct in this mode. The inductor 

current in this mode is provided as 

 

∆𝐼𝐿1 =
𝑉𝑖𝑛 − 𝑉𝑜

𝐿
 

 
Fig 8.a Mode 1 of Buck operation and Mode 1 and 5 of Boost 

operation 

 

Mode 2: 

In this, S1 and S3 are OFF and S2 and S4 is turned ON.  

The diodes D2 and D4 will starts conducting in this mode. It will 

freewheel the inductor currents which is provided as 

 

∆𝐼𝐿1 =
−𝑉𝑖𝑛 − 𝑉𝑜

𝐿
 

 

 
Fig 8.b Mode 2 of Buck operation and Mode 2 and 4 of Boost 

operation 

 

Boost mode of operation: 

In this the input voltage (Vin) is lower than the load voltage 

(Vo). In this L1a and L1b operate in series with the inductors L2a 

and L2b. The gating pulse waveforms of the proposed inverter in 

buck mode are provided below: 
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Fig 9 PWM pulses for proposed inverter in boost mode (a) 

Vin>Vo (b) Vin<Vo 

The boost operational modes are explained below: 

Mode 1 and 5: 

The operation of proposed inverter under this mode is same as 

that of the operation of proposed inverter under Mode 1 of buck 

operation. 

Mode 2 and 4: 

The operation of proposed inverter under this mode is same as 

that of the operation of proposed inverter under Mode 2 of buck 

operation. 

Mode 3 and 7: 

In this, S1 S3 S5 and S8 are OFF and S2 S6 S7 and S4 is turned 

ON. The inductor current in this mode is provided as 

∆𝐼𝐿1 =
−𝑉𝑖𝑛
𝐿

 

 
Fig 10.a Mode 3 and 7 of Boost operation 

 

Mode 6 and 8: 

In this, S2,S4, S5 and S8 are OFF and S1, S6, S7 and S3is turned 

ON. The inductor current in this mode is provided as 

∆𝐼𝐿1 =
𝑉𝑖𝑛
𝐿

 

 
Fig 10.bMode 6 and 8 of Boost operation 

 

Along with this modes, there are two other modes, named as 

overlap mode and dead time mode. In overlap mode, all the eight 

switches will be ON and the diodes are all reverse biased. The 

inductors will act as limiting inductors and hence shoot through 

current is avoided. In dead time mode, all the switches will be 

turned OFF and the capacitors will provide the path for the 

inductor current flow. 

 

III. CLOSED LOOP CONROL 

 

The proposed controller block diagram is shown below: 

 
Fig 11Control circuit for proposed inverter 

 

The reference voltage is compared with the measured load 

voltage and using that the mode of operation (buck or boost) is 

determined. The inverter function as boost inverter when Vo>Vin 

and the inverter function as buck inverter when Vo<Vin. 

In buck function, Vo is compared with the Vref and the error 

signal generated is provided to the PI controller which generates 

the modulation index, M as provided below: 

 
In this mode, D = 0. 

In boost function, Vo is compared with the Vref and the error 

signal generated is provided to the PI controller which generates 

the duty ratio, D as provided below: 

 
In this mode, M = 1. 

The PI controller is replaced with the fuzzy control which 

provides smooth transition between buck and boost mode. The 

settling time of PI controller is higher than that of the fuzzy 

control and also the transient response of fuzzy control is much 

better than that of the conventional PI controller. 

The process of fuzzy logic control is provided in the following 

block diagram, 

 
Fig 12 Internal process of Fuzzy Control circuit 

IV.SIMULATION PARAMETER DESIGN AND 

SPECIFICATIONS 

 

The proposed inverter specifications are tabulated below: 

 

Table I Proposed Inverter Specifications 

Input Voltage nominal (Vin) 180-400 V 

Output Voltage nominal (Vo) 220 V 

Load Power 1.1KW 

Load resistance 45Ω 

Switching frequency (Fsw) 30 Khz 

Inductors(La1,La2,Lb1,Lb2) 0.46mH 

Capacitors(C1,C2) 14μF 
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The inductor value can be calculated by the following equation: 

 

𝐿/2 =
𝑉𝑖𝑛∗𝐷

𝛥𝐼𝑜∗𝐹𝑠𝑤
 = 0.46290548mH. 

 

The inductor ripple current can be calculated using the following 

equation: 

 

∆𝐼𝐿 = 0.2 ∗
𝑉𝑜

𝑉𝑖𝑛
∗ 𝐼𝑜 = 0.55365349A 

 

The output capacitance is given by the following equation: 

 

𝐶𝑜 =
𝛥𝐼𝑜𝑐

8 ∗ 𝐹𝑠𝑤 ∗ 𝛥𝑉𝑜
= 14.2963507𝑢𝐹 

 

The capacitor ripple voltage can be calculated from the following 

equation: 

 

𝛥𝑉𝑜𝑐 =
𝛥𝐼𝑜𝑐

8∗𝐹𝑠𝑤∗𝐶𝑠𝑜
 = 2.2199627222 V 

 

The simulation circuit for the proposed buck boost inverter is 

provided below: 

 
Fig 13 Simulation circuit of the proposed buck boost inverter  

In this, the input voltage is varied from 180V to 400V at t=0.25s. 

The controller will sense any variation in the load voltage and 

regulate it by varying the modulation index and duty ratio in 

order to maintain constant load voltage. 

The inductor current waveforms are shown in the following 

graph: 

 
Fig 14 Inductor current of the proposed BBI 

The capacitor voltage waveforms is provided in the following 

graph: 

 
Fig 15 Capacitor voltages of the proposed BBI 

The load voltage is obtained by adding the capacitor voltages. 

The load voltage and current with varying input voltage is 

provided in the following graph: 

 
Fig 16 Load voltage and current of the proposed inverter 

with input voltage variation with PI controller  

In this the input voltage varied from 180V to 400V and the load 

voltage, when the transient change occurs the peak overshot of 

400V is occurred. This is due to the slow response of the PI 

controller. The PI controller is replaced with fuzzy controller. 

The load voltage and current waveforms with fuzzy controller in 

transient conditions is shown in the following graph: 

PAGE 

Fig 17 Load voltage and current of the proposed inverter 

with input voltage variation with FUZZY controller  

In this the load voltage experienced no disturbance unlike with PI 

controller when the input voltage suddenly changed. 

The %THD of the load current with PI controller is provided 

below: 

 
Fig 18 %THD of the load current with PI controller  

The %THD for the load current of proposed buck-boost inverter 

with PI controller is 9.3%. 

The %THD of load current with fuzzy logic controller is 

provided below: 
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Fig 19 %THD of the load current with FUZZY controller  

The %THD for the load current of proposed buck-boost inverter 

with fuzzy controller is 1.95%. 

V.CONCLUSION 

 

 In this paper, the analysis and design of single stage 

buck boost inverter was done. The load voltage regulation is 

done and checked with input voltage variation. The proposed 

inverter is operated under both boost and buck modes with PI and 

fuzzy controllers provided the voltage regulation. The transient 

performance of both the controllers is noted and THD of load 

current is measured and compared for both controllers. 
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